learn-flakes-the-fun-way/readme.md
2024-07-08 13:01:59 -05:00

269 lines
8.4 KiB
Markdown

This post is a Flake-based rewrite of [Learn Nix the Fun Way on fzakaria.com][0].
I really enjoyed the content of the post and wanted to write it as a Nix
user who is just using and prefers flakes. It does add a few extra steps and
complexity, but I think it's still valuable and perhaps reveals a bit more about
Nix and why it's pretty fantastic.
<!--more-->
## what-is-my-ip
Let's walk through a single example of a shell script one may write: _what-is-my-ip_
```bash
#!/usr/bin/env bash
curl -s http://httpbin.org/get | \
jq --raw-output .origin
```
Sure, it's _sort of portable_, if you tell the person running it to have _curl_ and _jq_. What if you relied on a specific version of either though?
Nix **guarantees** portability.
We might leverage _[Nixpkgs' trivial builders](https://ryantm.github.io/nixpkgs/builders/trivial-builders/)_ (specifically, `writeShellScriptBin`) in a basic Nix flake to turn this into a Nix derivation (i.e. build recipe):
```nix
# flake.nix
{
inputs.nixpkgs.url = "nixpkgs/nixos-24.05";
outputs = {nixpkgs, ...}: let
systems = ["aarch64-linux" "aarch64-darwin" "x86_64-darwin" "x86_64-linux"];
pkgsFor = func: (nixpkgs.lib.genAttrs systems (system: (func (import nixpkgs {inherit system;}))));
in {
packages = pkgsFor (pkgs: {
default = pkgs.callPackage ./what-is-my-ip.nix {};
});
};
}
```
```nix
# what-is-my-ip.nix
{pkgs}:
pkgs.writeShellScriptBin "what-is-my-ip" ''
${pkgs.curl}/bin/curl -s http://httpbin.org/get | \
${pkgs.jq}/bin/jq --raw-output .origin
''
```
> 😬 Avoid over-focusing on the fact I just introduced a new language and a good chunk of boilerplate. Just come along for the ride.
Here we are pinning our package to dependencies which come from NixOS/Nixpkgs release branch 24.05.
We can build our package and find out the Nix store path (which contains the
hash) like so:
```console
$ nix build --print-out-paths
/nix/store/lr6wlz2652r35rwzc79samg77l6iqmii-what-is-my-ip
```
And, of course, we can run our built result:
```console
$ ./result/bin/what-is-my-ip
24.5.113.148
```
Or run it from the Flake directly:
```console
$ nix run
24.5.113.148
```
Now that this is in our Nix store, we've naturally modeled our dependencies
and can do _fun_ things like generate graph diagrams (click the image to view
larger):
```console
$ nix-store --query --graph $(readlink result) | nix shell nixpkgs#graphviz -c dot -Tpng -o what-is-my-ip-deps.png
```
[![Image of what-is-my-ip dependencies as a graph](./what-is-my-ip-deps.png)](./what-is-my-ip-deps.png)
Let's add a _developer environment_ which contains our new tool.
This is a great way to create developer environments with reproducible tools.
```diff
diff --git a/flake.nix b/flake.nix
index 2a99357..ab32421 100644
--- a/flake.nix
+++ b/flake.nix
@@ -1,11 +1,24 @@
{
inputs.nixpkgs.url = "nixpkgs/nixos-24.05";
- outputs = {nixpkgs, ...}: let
+ outputs = {
+ self, # we will need to reference our own outputs to pull in the package we've declared
+ nixpkgs,
+ ...
+ }: let
systems = ["aarch64-linux" "aarch64-darwin" "x86_64-darwin" "x86_64-linux"];
pkgsFor = func: (nixpkgs.lib.genAttrs systems (system: (func (import nixpkgs {inherit system;}))));
in {
packages = pkgsFor (pkgs: {
default = pkgs.callPackage ./what-is-my-ip.nix {};
});
+
+ devShells = pkgsFor (pkgs: {
+ default = pkgs.mkShell {
+ packages = [self.outputs.packages.${pkgs.system}.default];
+ shellHook = ''
+ echo "Hello, Nix!"
+ '';
+ };
+ });
};
}
```
```console
$ nix develop -c $SHELL
Hello, Nix!
$ which what-is-my-ip
/nix/store/lr6wlz2652r35rwzc79samg77l6iqmii-what-is-my-ip/bin/what-is-my-ip
```
🕵️ Notice that the hash **lr6wlz2652r35rwzc79samg77l6iqmii** is _exactly_ the same which we built earlier.
We can now do binary or source deployments 🚀🛠️📦 since we know the full dependency closure of our tool. We simply copy the necessary `/nix/store` paths to another machine with Nix installed.
```console
$ nix copy --to ssh://beefcake $(nix build --print-out-paths)
$ ssh beefcake /nix/store/lr6wlz2652r35rwzc79samg77l6iqmii-what-is-my-ip/bin/what-is-my-ip
98.147.178.19
```
Maybe though you are stuck with Kubernetes or Docker. Let's use Nix to create an OCI-compatible image with our tool:
```diff
diff --git a/flake.nix b/flake.nix
index 99d6d52..81e98c9 100644
--- a/flake.nix
+++ b/flake.nix
@@ -10,6 +10,12 @@
in {
packages = pkgsFor (pkgs: {
default = pkgs.callPackage ./what-is-my-ip.nix {};
+ container = pkgs.dockerTools.buildImage {
+ name = "what-is-my-ip-container";
+ config = {
+ Cmd = ["${self.outputs.packages.${pkgs.system}.default}/bin/what-is-my-ip"];
+ };
+ };
});
devShells = pkgsFor (pkgs: {
```
```console
$ docker load < $(nix build .#docker-image --print-out-paths)
Loaded image: what-is-my-ip-docker:c9g6x30invdq1bjfah3w1aw5w52vkdfn
$ docker run -it what-is-my-ip-container:c9g6x30invdq1bjfah3w1aw5w52vkdfn
24.5.113.148
```
Cool! Nix + Docker integration perfectly. The image produced has only the files exactly necessary to run the tool provided, effectively **distroless**. You may also note that if you are following along, your image digest is exactly the same. **Reproducibility!**
Finally, let's take the last step and create a reproducible operating system using NixOS to contain only the programs we want:
```diff
diff --git a/flake.nix b/flake.nix
index 99d6d52..81e98c9 100644
--- a/flake.nix
+++ b/flake.nix
@@ -20,5 +26,27 @@
'';
};
});
+
+ nixosConfigurations = let
+ system = "x86_64-linux";
+ in {
+ default = nixpkgs.lib.nixosSystem {
+ inherit system;
+ modules = [
+ {
+ users.users.alice = {
+ isNormalUser = true;
+ # enable sudo
+ extraGroups = ["wheel"];
+ packages = [
+ self.outputs.packages.${system}.default
+ ];
+ initialPassword = "swordfish";
+ };
+ system.stateVersion = "24.05";
+ }
+ ];
+ };
+ };
};
}
```
Now we can run this NixOS configuration as a reproducible virtual machine:
```console
$ nixos-rebuild build-vm --flake .#default
$ ./result/bin/run-nixos-vm
# I/O snippet from QEMU
nixos login: alice
Password:
$ readlink $(which what-is-my-ip)
/nix/store/lr6wlz2652r35rwzc79samg77l6iqmii-what-is-my-ip/bin/what-is-my-ip
$ what-is-my-ip
24.5.113.148
```
💥 Hash **lr6wlz2652r35rwzc79samg77l6iqmii** present again!
We took a relatively simple script through a variety of applications in the Nix ecosystem: build recipe, shell, docker image, and finally NixOS VM.
One of the super neat part about flakes is that anywhere you find a flake, you
can make use of it. Try it out now!
> Note: The following obviously runs code from the internet. Be wary of doing this in general.
```console
# run a flake's package
$ nix run git+https://git.lyte.dev/lytedev/learn-flakes-the-fun-way
24.5.113.148
# enter a flake's development environment
$ nix develop git+https://git.lyte.dev/lytedev/learn-flakes-the-fun-way -c $SHELL
Hello, Nix!
$ what-is-my-ip
24.5.113.148
# load a flake's docker image and run it
$ docker load < $(nix build git+https://git.lyte.dev/lytedev/learn-flakes-the-fun-way#container --print-out-paths)
Loaded image: what-is-my-ip-container:wg0z43v4sc1qhq7rsqg02w80vsfk9dl0
$ docker run -it what-is-my-ip-container:c9g6x30invdq1bjfah3w1aw5w52vkdfn
# run a flake's NixOS configuration as a virtual machine
$ nixos-rebuild build-vm --flake git+https://git.lyte.dev/lytedev/learn-flakes-the-fun-way#default
Done. The virtual machine can be started by running /nix/store/xswwdly9m5bwhcz9ajd6km5hx9vdmfzw-nixos-vm/bin/run-nixos-vm
$ /nix/store/xswwdly9m5bwhcz9ajd6km5hx9vdmfzw-nixos-vm/bin/run-nixos-vm
# like running a pre-configured version of my workstation's NixOS configuration
# NOTE: this will probably take a good, long time to build and lots of bandwidth
# NOTE: you probably won't even be able to login
$ nixos-rebuild build-vm --flake git+https://git.lyte.dev/lytedev/nix#dragon
Done. The virtual machine can be started by running /nix/store/abc-nixos-vm/bin/run-dragon-vm
$ /nix/store/abc-nixos-vm/bin/run-dragon-vm
```
Hopefully, seeing the _fun things_ you can do with Nix might inspire you to push through the hard parts.
There is a golden pot 💰 at the end of this rainbow 🌈 awaiting you.
**Learn Nix the fun way.**
[0]: https://fzakaria.com/2024/07/05/learn-nix-the-fun-way.html