import ./common, std/[sequtils, algorithm, sugar, sets, strformat, strutils, tables, options, json, hashes, random, pegs] const BOARD_POSITIONS = 10 type Vec3 = tuple[x: int, y: int, z: int] Cuboid = tuple[pos: Vec3, size: Vec3] CuboidGeometry = HashSet[Cuboid] CuboidOperator = enum union, difference CuboidOperation = (CuboidOperator, Cuboid) let parser = peg""" grammar <- {'on' / 'off'} ' x=' range ',y=' range ',z=' range range <- {num} \. \. {num} num <- ('-' \d+) / \d+ """ proc apply(a: Vec3, b: Vec3, f: (int, int) -> int): Vec3 = (x: f(a.x, b.x), y: f(a.y, b.y), z: f(a.z, b.z)) proc `+`(a: Vec3, b: Vec3): Vec3 = a.apply(b, (a, b) => a + b) proc `-`(a: Vec3, b: Vec3): Vec3 = a.apply(b, (a, b) => a - b) proc `*`(a: Vec3, b: Vec3): Vec3 = a.apply(b, (a, b) => a * b) proc volume(a: Vec3): uint64 = a.x.abs.uint64 * a.y.abs.uint64 * a.z.abs.uint64 proc volume(c: CuboidGeometry): uint64 = for cb in c: result += cb.size.volume proc min(a: Vec3, b: Vec3): Vec3 = a.apply(b, (a, b) => min(a, b)) proc max(a: Vec3, b: Vec3): Vec3 = a.apply(b, (a, b) => max(a, b)) proc v3(x: int, y: int, z: int): Vec3 = (x: x, y: y, z: z) proc cuboid(pos: Vec3, size: Vec3): Cuboid = (pos: pos, size: size) proc cuboid(x: int, y: int, z: int, w: int, d: int, h: int): Cuboid = cuboid(v3(x, y, z), v3(w, d, h)) proc parseCuboidOperator(s: string): CuboidOperator = if s[1] == 'n': union else: difference proc parse(s: string): Option[CuboidOperation] = if s =~ parser: let n = matches[1..6].map parseInt pos = v3(min(n[0], n[1]), min(n[2], n[3]), min(n[4], n[5])) size = v3(max(n[0], n[1]) + 1, max(n[2], n[3]) + 1, max(n[4], n[5]) + 1) - pos result = some (matches[0].parseCuboidOperator, (pos, size)) proc vertices(c: Cuboid): array[6, Vec3] = result[0] = c.pos result[1] = c.pos + (c.size * v3(1, 0, 0)) result[2] = c.pos + (c.size * v3(0, 1, 0)) result[3] = c.pos + (c.size * v3(0, 0, 1)) result[4] = c.pos + (c.size * v3(1, 1, 0)) result[5] = c.pos + (c.size * v3(1, 1, 1)) proc contains(a: Cuboid, b: Vec3): bool = b.x >= a.pos.x and b.x <= (a.pos.x + a.size.x) and b.y >= a.pos.y and b.y <= (a.pos.y + a.size.y) and b.z >= a.pos.z and b.z <= (a.pos.z + a.size.z) proc contains(a: Cuboid, b: Cuboid): bool = b.vertices.allIt a.contains it proc intersect(a: Cuboid, b: Cuboid): Option[Cuboid] = let amx = a.pos + a.size let bmx = b.pos + b.size if amx.x < b.pos.x or bmx.x < a.pos.x or amx.y < b.pos.y or bmx.y < a.pos.y or amx.z < b.pos.z or bmx.z < a.pos.z: return none Cuboid let pos = max(a.pos, b.pos) some (pos: pos, size: min(amx, bmx) - pos) proc difference(a: Cuboid, b: Cuboid): HashSet[Cuboid] = let amx = a.pos + a.size let bmx = b.pos + b.size var xx = [(b.pos.x, b.size.x)].toSeq var yy = [(b.pos.y, b.size.y)].toSeq var zz = [(b.pos.z, b.size.z)].toSeq echo &"difference:\n ==> {a}\n ==> {b}\n -> {amx}, {bmx}" if a.pos.x < b.pos.x: xx.add (a.pos.x, b.pos.x - a.pos.x) if bmx.x < amx.x: xx.add (bmx.x, amx.x) if a.pos.y < b.pos.y: yy.add (a.pos.y, b.pos.y - a.pos.y) if bmx.y < amx.y: yy.add (bmx.y, amx.y) if a.pos.z < b.pos.z: zz.add (a.pos.z, b.pos.z - a.pos.z) if bmx.z < amx.z: zz.add (bmx.z, amx.z) echo &"xyz diff: {xx}, {yy}, {zz}" for xi in 0.. n.loadInput, p1, p2, alt